FOSSProF Final Report
Implementing & Integrating uncertainty-aware machine learning methods in UQpy

Project Overview

The project extends UQpy, a general-purpose Python package for uncertainty quantification, to implement
uncertainty-aware scientific machine learning methods. A new Scientific Machine Learning module is
introduced in UQpy using the Pytorch library (Version 2.2.1) as a backend. This module is focused on
quantifying uncertainties for multiple existing neural networks and neural operator architectures via
established methods such as variational inference and probabilistic dropout. The module allows
plug-and-play integration with the existing modules of Pytorch.

With the surge in the use of scientific machine learning methods across disciplines, quantifying
uncertainties in the predictions of data-driven models becomes critical. This module provides easy and
user-friendly integration of uncertainty quantification capabilities to existing network architectures,
benefiting a large number of users within the scientific machine learning community. The module can be
accessed from the publicly available GitHub repository:
https://github.com/SURGroup/UQpy/tree/feature/scientific_machine learning

The code will be fully integrated into the master branch of UQpy in the next month, triggering a new
official release of the software.

Project Activities and Progress
The scientific machine learning module is implemented in four different levels of functionality:

e Layers: These define the computations that serve as the primary building blocks for various
neural network architectures. Instances of UQpy layers can be integrated with PyTorch layers to
construct neural networks, enabling seamless integration between PyTorch's existing neural
network functionalities and the additional capabilities introduced by UQpy.

e Neural Networks: These define global architecture types for different varieties of neural
networks. Neural network classes handle the attributes required for training different architectures
and provide flexibility to develop new architectures.

e Loss Functions: These define the objective functions or part of the objective functions necessary
for training the neural networks. For example, while training a Bayesian neural network using
variational inference, the divergence between the prior and variational posterior distributions is
necessary to compute the ELBO loss. This divergence term can be computed using the UQpy loss
functions.

e Trainers: These handle the various steps necessary to train a neural network, such as data
processing, optimizing, sampling in the case of a Bayesian neural network, etc. Trainers combine
all the other modules to learn the parameters of the neural networks to perform a specific task.

The following common methods in UQ and scientific machine learning have been implemented in the
UQpy module:
e Layers
o Probabilistic Dropout Layers: These layers implement the probabilistic dropout method
to train a Bayesian neural network
o Bayesian Layers: These layers are building blocks to train a Bayesian neural network
using the variational inference approach.
o Fourier layers: These implement the basic operations necessary to construct a Fourier
network
e Loss Functions

https://github.com/SURGroup/UQpy/tree/feature/scientific_machine_learning

o Kullback-Liebler divergence: Computes the KL divergence between prior and the
variational posterior distributions of the parameters in a Bayesian neural network
o Jensen Shannon divergence: Computes the JS divergence between prior and the
variational posterior distributions of the parameters in a Bayesian neural network
o Lpnorm loss: Computes the Lp norm between two vectors
e Neural Networks: The following varieties of neural network architectures are implemented
o Feed-forward networks
o U-Nets
o Deep Operator Networks
o Bayesian Neural Networks
e Trainers
o Deterministic training: Trainer to learn the parameters of a deterministic network
o Bayes by Backprop training: Trainer to learn the posterior distributions of a Bayesian
neural network using variational inference.

In addition to these, base classes are defined for each of these methods for efficient future developments.
Documentation, unit tests, and integration tests have been written for all implemented features. The
introduction of the scientific machine learning module has given a new direction to the UQpy software
package with significant additions to the code base. The scientific machine learning module has increased
the code base of UQpy by 80%. One of the key challenges in developing this module was to manage its
interactions with existing modules of UQpy and the Pytorch library. It was essential to ensure seamless
integration between these modules to enable plug-and-play compatibility with existing ones. This was
achieved by thoughtfully designing the structure of the scientific machine learning module, prioritizing
data type compatibility, and efficient communication pathways between various modules.

Outcomes and Impact
The scientific machine learning module of UQpy adds to the existing body of open-source software for

implementing various neural network architectures in Python. Further, the module adds a new direction
by enabling uncertainty quantification capabilities for scientific machine learning. This will help advance
the application of uncertainty quantification techniques in machine learning models.

Community engagement: The scientific machine learning module of UQpy is presented in two workshops
to engage with the machine learning and uncertainty quantification communities. The details of the
workshops are as follows:

e Mini-tutorial "Multi-Modal Data Driven and Physics-Informed Machine Learning with
Uncertainty for Materials Applications", SIAM Conference on Materials Science (MS24) held at
Carnegie Mellon University in Pittsburgh, PA from May 19-23 2024. Presented by Michael
Shields.

e Software tutorial at the Workshop on Frontiers of Uncertainty Quantification held at the Technical
University of Braunschweig, Germany from September 24-27 2024, Braunschweig, Germany.
Presented by Connor Kirill.

With the rapid developments in the field of scientific machine learning and uncertainty quantification, the
future goals for the project would be to integrate new methods and techniques into the existing
framework. The module is designed in a way that allows for the flexibility of extending the modules to
keep pace with the developments in the community.

In addition, a journal paper on the UQpy Scientific Machine learning module in currently in development.
This paper, entitled “Version 4.2 - Plug and Play Uncertainty Quantification Scientific Machine Learning
in UQpy,” will be published as a Software Update paper in the journal SofiwareX, following on our prior

submission on the core code in reference [1]. We expect submission of the journal article in the next
month.

Upon release, all updates will be supported with documentation on the UQpy documentation page at the
link provided below:

A screenshot of this pending documentation is shown in the attachments below.

References:
[1] Tsapetis, D., Shields, M. D., Giovanis, D. G., Olivier, A., Novak, L., Chakroborty, P., ... & Gardner,
M. (2023). Uqpy v4. 1: Uncertainty quantification with python. SofiwareX, 24, 101561.

Attachments:
The following is a screenshot of a page of documentation and a code sample from UQpy’s Scientific
machine-learning module:

Scientific Machine Learning

This module contains functionality for Scientific Machine Learning methods supported in ugpy .
This package focuses on supervised machine learning, specifically on the architecture and training
of Neural Networks.

This module is not intended as a standalone package for neural networks. It is designed as an
extension of PyTorch and, as much as practical, we borrow their syntax and notation to implement
UQ methods in a compatible way. For example, the Bayesian counterpart of torch's Linear layeris

UQpy's BayesianLinear , which uses similar inputs.

improves

Uncertainty Machine
Quantification Learning

‘”_‘__///

informs

The relationship between UQ4ML and ML4UQ.

Attachment 1: A sample documentation page from UQpy

import torch

import torch.nn as nn

from torchvision import datasets

from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt

import UQpy.scientific_machine_learning as sml

plt.style.use("ggplot")

class BayesianNeuralNetwork(nn.Module):
"""UQpy: Replace torch's nn.Linear with UQpy's sml.BayesianlLinear"""

def _ init_ (self):
super().__init_ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Seguential(

)

sml.BayesianLinear(28 % 28, 512), # nn.Linear(28 * 28, 512)
nn.ReLU(),

sml.BayesianLinear(512, 512), # nn.Linear(512, 512)
nn.RelLU(),

sml.BayesianLinear(512, 512), # nn.Linear(512, 512)
nn.ReLU{),

sml.BayesianLinear(512, 1@), # nn.Linear(512, 18)

def forward(self, x):

X

self.flatten(x)

logits = self.linear_relu_stack(x)
return logits

Attachment 2: A sample code from UQpy examples

