
 

 
 
RAIL 
Free and Open Source Software 
Project Fund (FOSSProF) Final Report 

 

Barbara Holt  

Mysore Lab 

 



1 

ABOUT RAIL 

Code Repository:  github.com/badholt/rail 

The Rodent Automated and Integrated Learning (RAIL) system is an open 
source project leveraging web-based developer tools and open source software 
to operate Internet of Things (IoT) hardware in the behavioral training of 
animal subjects for neuroscience experiments, specifically visually guided tasks 
in mice.  Our primary objective is to provide an open source community-based 
alternative for high-throughput operant behavioral training that pairs the user-
friendly benefits of more costly commercial software systems with the specially 
tailored benefits of a home-grown system developed in the lab.  By providing 
neuroscience researchers with a modular, versatile, and cost-effective platform 
for behavioral training, we hope to cultivate new research opportunities and 
community dialogue by lowering some of the financial and technical barriers to 
entry. 

The average behavioral training paradigm may take many months to set up and 
implement and often requires engineering or technical expertise that lies 
outside the scope of a laboratory’s research focus.  Behavioral training 
outcomes also involve a considerable amount of animal subject attrition due to 
some animals failing to learn a particular task or complications arising from 
other aspects of the project, such as surgeries.  Therefore, it is essential for 
researchers to be able to set up a novel training paradigm in a timely manner 
while simultaneously preparing to train as many subjects in parallel as 
possible. 

Commercial behavioral training systems provide a reliable user experience for 
researchers, usually offering robust technical support and detailed 
documentation of their systems.  Unfortunately, in many cases, these 
commercial systems are also prohibitively expensive, with much of their 
proprietary software either “paywalled” or restricted in its functionality.  Such 
financial limitations can significantly constrict the size of a research project, 
limiting a laboratory’s ability to engage in massively parallel experiments. 

Conversely, lab-grown systems feature highly customized and tailored designs, 
precisely targeted towards lab-specific methodologies and paradigms.  
However, these systems are also subject to varied reliability and burden a 
behavioral-focused lab with labor-intensive technical development and 
support.  RAIL serves as a middle-ground option with an extensible modular 
and user-friendly design, open source community support, and added 
reliability and quality assurance thanks to Mysore Lab’s extensive calibration, 
characterization, and beta testing.  While RAIL setup requires individuals and 
labs to take a more active role in the experiment setup process than 
commercially available options, it does so for a fraction of the cost.  Likewise, 
while unmodified RAIL software will not perfectly address every possible 

https://github.com/badholt/rail
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experimental paradigm, it provides a stable foundation for implementing novel 
use cases in a fraction of the time required for a lab-grown system.  Ultimately, 
a cost-effective and user-friendly system for behavioral training permits 
neuroscience laboratories to focus more on research than setup by more easily 
generating a large pool of highly trained mice for massively parallel 
experiments. 

 

ACTIVITIES & PROGRESS  
Due to unanticipated delays in Johns Hopkins’ procurement process, our 
scaling optimization efforts are still ongoing for the high-throughput version of 
the RAIL system.  However, the months long process has allowed us to make 
significant inroads with the Node-based open source community, refine our 
internal beta testing and development processes, and focus on improving 
reliability and convenience for the end-user. 

Through consultation with Meteor JS, MongoDB, and ScaleGrid engineers, we 
learned how to characterize our active database and project future data growth 
according to current industry standards.  As a result, we were able to translate 
the prototypical usage of a RAIL operant training box into common database 
metrics, such as network and memory requirements.  In the coming year, this 
per-box data equivalency unit will allow us to reinterpret code efficiency and 
database performance improvements in terms of added research capability and 
overall cost savings.  Thus, we can now also provide higher fidelity cost 
estimates to potential users in the neuroscience and open source communities, 
as well as others who are interested in using or hosting RAIL software. 

Fig. 1.  Sample data equivalency for the network bandwidth requirements of one RAIL box 
running a Mysore Lab behavioral training paradigm of a visual discrimination task in mice. 

In response to the logistical challenges involved in launching our scaling 
efforts, we pivoted our approach to emphasize more in-house beta testing of the 
RAIL system.  We branched our code base into three separate versions of RAIL 
– (1) a master branch dedicated to “production,” or in this case, established 

Network Bandwidth Requirements 

Average Document Size 7725.525183 

Objects per Second per Box 0.154 

Documents per Second Served 4 
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session operations, (2) a development branch for testing new features and bug 
fixes on the already established foundation, and (3) a desktop-capable version 
of RAIL which was updated to Meteor 3.0 and is no longer backwards 
compatible with previous versions of the software.  In parallel, using MongoDB 
Compass and a series of custom installers, we also developed a new workflow 
for modifying the database as it underwent active development changes. 

 

THE DEVELOPMENT BRANCH 

From a behavioral standpoint, one of the most significant new features added 
to the RAIL development branch was the capacity to generate customizable 
probability distributions.  Visual discrimination paradigms frequently include 
multiple stimuli or variants of a single visual stimulus.  This requires the 
software to have a method of deciding which stimulus is shown when and for 
how often.  For example, in earlier phases of Mysore Lab’s standard visual 
discrimination task, a gratings stimulus will be shown oriented vertically for 
approximately half of an experiment session’s trials and horizontally for the 
other half of an experiment session’s trials.  In the past, the order and 
probability of one stimulus orientation or the other occurring was handled by 

an algorithm with a 
random number 
generator (RNG).  
Expanding upon this basic 
functionality, several 
variables were exposed 
and incorporated into the 
graphical user interface 
(GUI) for users to 
customize, and an entirely 
new algorithm was 
developed to produce 
variable and weighted 
trial combinations beyond 
the standard 1:1 ratio. 

Now, when researchers 
need to distribute the 
value of a particular 
variable across a single 
session, they may 
carefully control the 
proportions of individual 
outcomes.  A default 
distribution is 
automatically calculated 
according to the default 

Fig. 2.  Screenshot of the experiment session settings 
GUI in web-based RAIL application.  Here, a template for 
Shaping 6, a late-stage Mysore Lab visual task paradigm, 
is loaded and awaiting modification of the probabilities of 
either a horizontal or a vertical gratings stimulus 
occurring in an upcoming Shaping 6 session. 
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values of a given experiment template.  However, the overall distribution size 
may either be adjusted relative to this default size or updated to an absolute 
amount.  Next, the desired percentage of each stimulus variant may be 
specified, with a readout on the GUI reporting a preview calculation of the 
number of trials presenting each variant. 

Finally, upon session initiation, a session scaffold is generated using the 
modified template, and the generated trials are shuffled with an efficient O(n) 
Fisher-Yates shuffling algorithm.  The experiment session will then proceed 
either for a specified number of trials or a specified duration in milliseconds.  
However, independent of the number of trials initiated, the probability of a 
given stimulus variant being presented will be determined by the researcher’s 
specified probability parameters.  The percentages and distribution size will 
essentially determine the number of each type of trial in the probability “bag,” 
while interactions from the mouse will determine which trials are presented, as 
if the mouse were drawing “tiles” from the probability bag.  In addition to the 
presentation of a specific stimulus, other session variables may utilize this 
same probability distribution functionality across trials.  For example, the 
opacity or location of a stimulus may vary according to a preset holistic 
probability distribution. 

   

Fig. 3.  Locations of two gratings stimuli from Mysore Lab’s late-stage Shaping 8A visual 
paradigm are shown relative to a 3x3 and a 5x5 calibration grid on a 800x400 px screen.  The 
text overlays shown were for labeling purposes only and are not present in the RAIL GUI. 

When multiple stimuli and variables are distributed across a session, the 
combinatorial probabilities can become quite complex.  Thus, a second major 
update to RAIL involved the introduction of modular template definitions for 
dependent variables.  In other words, the value of one variable, such as a 
stimulus’ location on a grid, may now be described relative to another variable, 
such as a second stimulus’ location on the grid, within our portable templates.  
Previously, dependent variables were hard-coded within custom functions.  
Although new custom functions and methods could be added to RAIL, on a 
practical level, this rendered our software more lab-specific, tailored to the 
idiosyncrasies of Mysore Lab operations.  The addition of this expansive 
capability supports community usage by exponentially increasing the diversity 
of possible relationships between experiment components.  For example, a 
stimulus’ opacity may now be linked to its orientation, or the screen brightness 
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may be linked to the duration of an 
audio tone.  By moving beyond the 
need for dependent variables to be 
enveloped in hard-coded functions, 
RAIL software can now naively 
reproduce more experimental 
paradigms and implementations 
straight “out of the box” with shareable 
JSON templates. 

Among several bug fixes to templates 
and user accounts, we also added a 
third major enhancement to the user 
experience – a calibration view.  As 
stimulus presentation and reward 
delivery are critical for behavioral 
training on visual tasks, researchers 
must ensure that stimuli are presented 
in their proper locations and that water 
rewards are delivered in precise 
amounts at all times.  However, 
economical IoT hardware typically 
does not deliver the same degree of 
precision and performance as more 
expensive commercial products.  This 
may result in a significant increase in 
the amount of time a researcher spends 
calibrating component devices.  Thus, 
in order to minimize the time spent on 
calibration and daily session 
operations, we’ve added a new 
“calibration view” for stimulus 

alignment on the screen, as well as for modification of the milliliters of water 
reward delivered according to a customizable linear function.  In both cases, to 
maximize convenience for the researcher, calibration values for individual 
boxes are specified as offsets instead of absolute values.  This allows all 
operable boxes or devices to be run en masse, initiated simultaneously from a 
single session template but each delivering water reward and visuals according 
to their individual calibration requirements.  In principle, calibration offsets 
may be applied to the characteristics of any hardware component, such as an 
alternative liquid or food reward delivery system.  In a future code release, we 
plan on updating this language and our documentation to reflect a more generic 
usage of this feature. 

Fig. 4.  A sample JSON object 
describing a flanker stimulus similar to 
the grey gratings shown in Figure 3.  
For this flanker stimulus, the 
orientation of the gratings is dependent 
on the orientation of the target 
stimulus.  Here, the ‘transform’ 
property specifies that the flanker 
orientation will always be rotated 90° 
clockwise, or perpendicular to the 
target stimulus. 
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Fig. 5.  Two windows depicting a “calibration view” within the RAIL GUI.  The leftmost 
window modal is used to align visual elements to the physical screen on each box or device, 
and the rightmost window modal is used to offset the amount of water reward delivered to a 
particular box, or the duration the solenoid valve stays open, as well as to customize the linear 
function used to translate the amount in milliliters to a solenoid open duration in seconds. 

An update of Raspbian OS from Debian Bullseye to Debian Bookworm 
propelled RAIL code forward in regard to futureproofing by boosting its 
compatibility with new hardware, such as the Raspberry Pi 5.  Since different 
devices and OSes may be integrated into the RAIL system, this also offered an 
excellent opportunity to refine how cross-platform installers will be handled 
during RAIL setup for both RAIL boxes and the RAIL hub.  The installer 
recommendations from the Linux Foundation’s OpenJS courses introduced me 
to new resources that helped to streamline cross-platform installations.  Our 
RAIL documentation was also improved to cover common troubleshooting 
cases, particularly concerning the new installer and initial setup. 

Each RAIL operant training box includes a Raspberry Pi which runs either the 
browser-based RAIL application or the RAIL desktop application in kiosk 
mode.  Simultaneously, several background services on the Raspbian operating 
system (OS) maintain a connection to device hardware and software.  However, 
the Debian Bookworm update also rendered some of the RAIL box’s 
background services obsolete and revealed a future dilemma for the RAIL 
workflow. 

Carefully calibrated screen brightness is very important for visually based 
behavioral tasks and video recordings of experiment sessions are essential for 
aligning behavior to neural data.  However, adjusting each box manually or 
downloading from each RAIL box one at a time quickly becomes untenable at 
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scale.  Therefore, convenient remote access to RAIL boxes is a high priority for 
the overall serviceability of the system. 

The Python scripts governing the background services for remote modification 
of RAIL box properties and Raspberry Pi settings, such as screen brightness, 
were updated for Debian Bookworm, and brand new functionality was added in 
the form of custom Windows Batch scripts for bulk video downloads from RAIL 
boxes to the RAIL hub.  Basic video and storage space management controls 
were added to the development version of our RAIL GUI, as well, integrated 
into a device management page.  Alternatively, we investigated automated 
uploads to third-party video hosting and file storage services, such as Google 
Drive.  Currently, these third-party services involve authentication and API 
inclusion that is too complex for the simple reliable functionality RAIL aims to 
provide, but it may prove to be a useful community feature in the future. 

Lastly, RealVNC has long been the default remote access platform for 
Raspberry Pi’s and has provided the RAIL system with a user-friendly GUI for 
accessing each RAIL box.  However, as of the update to Debian Bookworm, 
Raspbian OS no longer supports RealVNC.  Over the summer, RealVNC ended 
its free tier plan, requiring Raspberry Pi and other open source projects to find 
alternative solutions for convenient remote access with a GUI.  Raspberry Pi is 
already filling the vacuum with Raspberry Pi Connect, and RAIL will likely 
transition to using Raspberry Pi’s VNC service as a convenient remote access 
option in the future.  Yet, the experience highlighted some of the inherent risks 
involved in open source projects like RAIL, where the functionality of the 
software depends on compatibility between many different libraries, packages, 
and code dependencies maintained by groups with competing interests.  For 
now, RAIL maintains stable remote access connections to RAIL boxes through 
the multiple redundancies of non-commercial RealVNC, Secure Shell Protocol 
(SSH), and the custom scripts recently written for use on Debian Bookworm. 

 

THE DESKTOP APPLICATION 

Expanding the scope of the RAIL system from small scale experiments to high-
throughput behavioral training amplifies some of the most critical development 
challenges we’ve faced to date – namely, (1) network latency, (2) compliance 
with organizational security requirements, and (3) providing a convenient user 
experience that minimizes the abundant repetitive tasks involved in running 
massively parallel experiments. 

Both the master and development branches of RAIL are network-dependent 
due to industry-standard security restrictions which limit a web browser’s 
access to local device hardware.  Nearly every behavioral training paradigm 
requires linking physical inputs, or real-time browser interactions, with either 
physical hardware outputs controlled by a local device or systematic software 
responses controlled by a database or native management script.  This 
necessitates communication between the browser, local hardware, and 

https://www.raspberrypi.com/documentation/computers/remote-access.html#raspberry-pi-connect
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potentially, a centralized database server.  Thus, we used the IoT-friendly 
Message Queuing Telemetry Transport (MQTT) protocol as a workaround to 
transport data and commands between the browser-based RAIL application 
and local hardware via MQTT hardware drivers written in Python.  These 
messages were relayed through our centralized database, or RAIL “hub,” which 
allowed for real-time monitoring and data collection during sessions, yet 
generated a concerning amount of network latency.  Using MQTT in 
combination with the WebSockets protocol as an outer “shell” helped us to 
minimize latency surrounding real-time interactive events in the browser, yet 
not enough to allay research concerns. 

 

Fig. 6.  Simplified comparison of two distinct networking architectures for accessing essential 
device hardware involved in operant training.  In panel A, a network-dependent workaround 
utilizes the MQTT networking protocol to bypass browser limitations for accessing hardware.  
In panel B, a network-independent desktop application communicates directly with hardware 
on the Raspberry Pi device, significantly reducing the latency involved in experiment sessions. 

Given many neuroscience lab’s interest in integrating neuroscience hardware, 
such as calcium imaging or optogenetics microscopes, into their behavioral 
training paradigms, a more robust and reliable approach to local hardware 
access became necessary.  Precision timing and reporting of events is crucial for 
the accurate interpretation of any neural data collected.  Therefore, we 
developed a partially offline network-independent solution for communicating 
with our operant training box hardware – a standalone desktop application.  
After the initial instructions for how an experiment session should proceed are 
sent to participating RAIL boxes over the local network, in the form of a JSON 
template, the desktop application is free to execute trials without further 
communication with the central hub.  This simulates the basic offline design of 
many lab-grown behavioral training systems without sacrificing the user-
friendly features found in commercial software.  Furthermore, it allows each 
RAIL box’s Raspberry Pi to run the session continuously and store data locally 
before uploading a finalized report to the hub at the end of each session.  Since 
trial events are no longer subject to network delays, the data-consequential 
effects of network latency are effectively removed from experiment sessions.  A 
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local network is only needed to synchronize data en masse between the RAIL 
boxes and the RAIL hub at the beginning or end of unqueued sessions. 

 

Fig. 7.  Trial lag times are plotted for the first four phases of a Mysore Lab behavioral 
training paradigm.  Each duration in milliseconds encompasses the variable network latency 
involved in communication between a touch input in the browser-based RAIL application and 
the transit of a time to live (TTL) electrical pulse from a Raspberry Pi general purpose input 
output (GPIO) pin to the data acquisition (DAQ) box of an Inscopix nVistaHD calcium 
imaging microscope. 

Our planned development of a RAIL desktop application coincided with an 
exciting upgrade to our underlying Meteor JavaScript (JS) framework, Meteor 
3.0.  Years in the making, this significant improvement to the Meteor JS 
architecture assists in the promotion of our RAIL community building efforts.  
Not only does Meteor 3.0 modernize Meteor for 2024, bringing it into 
compliance with the greater Node.js foundation and enabling a host of new 
development tools, but it is presently drawing in a new crowd of software 
developers and fresh community support.  A massive code migration is 
currently underway as myriad Meteor packages are being updated, some for the 
first time in years, to the new asynchronous Meteor format.  As the updates 
continue, we plan on consolidating our code further, moving away from custom 
packages where possible and replacing package dependencies with custom code 
where necessary. 

One of the most fundamental changes contained within the June Meteor 3.0 
update was a transition away from synchronous fibers to an asynchronous 
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“await/async” callback coding structure.  As a Node-based JS web framework, 
Meteor is built upon Node.js but handles all of the web development tasks 
which are currently unsupported by Node.js.  Historically, Meteor has deviated 
from Node.js conventions to prioritize readability and user experience, 
occasionally putting it at odds with Node.js and preventing updates due to code 
conflicts.  This summer’s transition to an asynchronous format finally 
standardized Meteor JS with the rest of Node.js, allowing Meteor to integrate 
Node 20, the newest version of the Node.js stack.  Thus, the Node developer 
courses I participated in through the Linux Foundation have become even more 
relevant to RAIL development, especially the control flow sections on managing 
asynchronous operations.  Since Node.js inputs and outputs will no longer be 
handled by RAIL fibers, it is of paramount importance that RAIL code is 
optimized for efficient parallel execution of events.  In this regard, the lessons 
learned from the Linux Foundation’s asynchronous lab exercises will be 
invaluable going forward. 

Although linguistically Meteor 3.0 is a critical departure from prior 
implementations of Meteor JS, its release provided an opportunity to efficiently 
comb through and update RAIL code while performing an internal code audit.  
As a result, we were finally able to update RAIL to the cutting edge version of 
Meteor.  We had previously postponed this unwieldy update due to limited time 
for software development, for handling deprecated packages and unmaintained 
software dependencies (see Supplementary A for a sample Meteor packages 
listing).  Now that our RAIL code has been refreshed from this development 
rut, RAIL users will be able to utilize the latest web tools and infrastructure, as 
well as better meet modern operational security standards. 

 

OUTCOMES & IMPACT  
Many lab-grown behavioral training systems hold the potential for directed 
development into a more generalized community-accessible training solution. 
However, very rarely does neuroscience software make a successful transition 
from custom lab-specific software to an active open source project.  When 
accomplished, the impacts of software like Psychtoolbox, OpenEphys, or Bpod 
on research capabilities and productivity are immense.  Standardization across 
the broader neuroscience community cultivates collaboration and fosters new 
ideas as novel technologies are incorporated cross-contextually from outside 
fields.  The overarching objective of the RAIL project has been to produce 
sustainable and impactful open source software capable of filling this need for 
behavioral training in neuroscience.  To achieve this end, Mysore Lab needed 
the time and resources to focus on refining the underlying RAIL software in a 
multifunctional direction, rather than simply refining a few parameters or 
features to fit a particular study.  Our participation in the FOSSProF program 

http://psychtoolbox.org/
https://open-ephys.org/
https://github.com/sanworks
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has given us the operational latitude we needed to expand upon our original 
vision for a modular and versatile behavioral training platform. 

By preparing RAIL for community engagement, we are finally in a position 
where we can begin to build upon our network and collaborate technically with 
other labs.  Common pitfalls of open source projects include limited support, 
limited functionality, compatibility issues, and the lack of a centralized 
provider – all issues that stem from the absence of adequate incentives for 
sustained development.  While we suspect that addressing these concerns and 
cultivating a RAIL community network will be a long-term and gradual learning 
process, we believe that due to its relevance to a small but important niche of 
academic research, there are sufficient incentives already in place for RAIL 
development to progress in multiple directions of community support.  
Although most contributions will likely serve a lab-specific purpose or use case, 
there is already enough overlap across experimental paradigms and disciplines 
for any collaborative components to significantly expedite the experiment setup 
process for myriad labs. 

In the interest of sustainability, we first discussed the marketing potential of 
RAIL with Andrew Wichmann from Johns Hopkins Technology Ventures 
(JHTV).  Thanks to his guidance, we obtained a better understanding of the 
current business and legal landscape, as well as RAIL’s position as a middle-
ground option in the neuroscience software space, with combined elements of 
both commercial and lab-grown behavioral training systems.  Going forward 
with this perspective, we’ve been able to bolster RAIL’s strengths and fill in 
feature gaps in order for RAIL to better serve as a middle-ground behavioral 
training system.  Modernization updates have helped with future-proofing the 
RAIL software and preparing for a code release to which contemporary 
audiences would be more willing and capable of contributing.  Code review and 
lab-internal auditing have resulted in better security and compatibility with 
popular software and operating systems, and generalized features have been 
expanded upon with user-friendly capabilities that better showcase the system’s 
modularity.  Altogether, these improvements have prepared us for optimizing a 
new scalable version of RAIL and ultimately promoting a more reliable and 
customizable open source product to foster community engagement. 

Our engagement with the wider open source community involves a two-prong 
approach, with emphasis on both the open source software development 
community and the open source neuroscience community.  Although not all of 
our networking has resulted in meaningful collaboration, we have made 
significant strides by generating early interest in our future scaling-optimized 
and desktop-capable RAIL release. 

For the neuroscience prong, we first researched other lab-grown systems that 
are currently being used in the successful training of mice on complex 
behavioral tasks.  After a detailed discussion with a lab studying spatial 
representations in freely moving mice, we confirmed several of our suspicions 
on how best to address community concerns without sacrificing the user-
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friendliness or reliability benefits of the established RAIL system.  Although 
labs such as this one apply many of the same components to their behavioral 
training systems as Mysore Lab does with RAIL, components such as Python 
scripts, Raspberry Pi microcontrollers, IoT hardware, or solenoid valve liquid 
delivery systems, there is generally no emphasis on system calibration, 
documentation, user convenience, or code reusability.  The average experiment 
is mostly hard-coded, and reliability usually consists of avoiding networking 
and centralization.  Oftentimes the system operator and the original developer 
of the system are far removed, with basic training passed down from researcher 
to researcher but no clear path forward for how to add new functionality to the 
system.  Thus, in cases where the current researcher is forced to manage 24 
different command terminal windows to start 24 different boxes running the 
same hard-coded paradigm, there seems to be genuine interest in an open 
source system that can recreate the task through a GUI and manage sessions 
reliably and conveniently en masse. 

On October 7th, our new version of RAIL will be presented at the Society for 
Neuroscience (SfN) conference in Chicago, Illinois.  This annual mass gathering 
of the neuroscience community attracts nearly half a million neuroscientists 
from labs around the globe.  At one of our past presentations of RAIL at SfN, 
we spoke with around 14 different labs who were actively interested in the 
then-untested RAIL prototype and added them to our mailing list.  Now that 
the RAIL project is at a more mature state, we expect to grow our list with 
additional community engagement.  And this time, we will have more 
community building tools at our disposal to make the most of their 
engagement. 

For the software prong, the most promising avenues 
forward seem to be through advertising RAIL, our 
particular application or use case of their respective 
softwares, through the Meteor JS, MongoDB, and 
ScaleGrid networks.  Inclusion on website showcases 
and participation in community forums will inspire 
curiosity and interest in the new community-
prepared version of RAIL.  Meteor Software in 
particular has already provided us with educational 
resources to share with both experienced and 
aspiring engineers and researchers who express 
interest in learning how to use Meteor JS and RAIL.  
Along with RAIL-specific information and resources, 
these materials will be distributed at SfN in October. 

The Linux Foundation’s JavaScriptLandia 
membership was also an excellent introduction into 
the Node.js ecosystem via a reputable industry giant 
and credentialing authority.  These credentials will be 
included in our RAIL community outreach materials.  

Fig. 8.  The 
JavaScriptLandia badge 
conferred upon purchase of 
an individual membership.  
It appears the networking 
aspects of membership are 
only available through 
public connections with 
personal social media 
accounts. 
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However, in isolation, the program’s networking potential appears to be limited 
without further purchases or interactions through third-party social media. 

Future RAIL development will focus on thoroughly testing the RAIL desktop 
application in an experimental lab setting using funding from an R21 and other 
grants.  While the RAIL system was actively engaged in data collection for an 
ongoing experiment, it was not practical to make significant changes to the 
working RAIL hub software.  Now, after the completion of SfN on October 9th, 
the current RAIL master and development branches will be deprecated to make 
way for the desktop-capable Meteor 3.0 version.  As soon as the purchasing 
process resolves for Meteor JS and ScaleGrid, this newest version of RAIL will 
be hosted on Meteor Galaxy and characterized using the Monti Application 
Performance Monitor (APM).  In addition to monitoring system metrics like 
memory usage, CPU usage, and active network connections, Monti APM will 
allow us to drill down and optimize RAIL code at a granular methods level.  Any 
and all performance improvements will then be translated into and expressed 
as added parallel training capabilities using per-box data equivalency units as 
described in Figure 1. 

 

Fig. 9.  Screenshots of an example application being monitored and analyzed by Monti APM.  
On the left, Monti APM monitors overall system resources, data which will be used to stress 
test the RAIL system and calculate the total number of RAIL boxes that may be run in parallel. 
On the right, a method level breakdown of application usage sorts from highest to lowest 
throughput, allowing programmers to optimize the highest priority methods first for the 
greatest upfront resource savings and the quickest performance improvements. 
Images from https://docs.montiapm.com/ 

https://docs.montiapm.com/introduction
https://docs.montiapm.com/introduction
https://docs.montiapm.com/introduction
https://docs.montiapm.com/
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Fig. 10.  Landing splash page for the RAIL project, currently hosted on GitHub Pages. 

By uploading our RAIL application to Meteor Galaxy and eventually hosting our 
database on ScaleGrid’s standalone MongoDB server, we will be engaging in 
vertical scaling by moving operations onto a more powerful resource-rich 
machine.  Horizontal scaling would require we further segment our RAIL 
application, distributing different system capabilities across separate servers.  
We have already segmented RAIL services into four separate servers based on 
functionality – (1) a general operations Node server, (2) a real-time video 
streaming server, (3) a Mongo database server, and (4) a MQTT server.  As we 
collect system performance data, we will use our premium support plans to 
consult with Meteor and ScaleGrid engineers on whether this is sufficient 
horizontal scaling for our needs or if further optimization is possible.  
Additionally, we will use support 
recommendations to optimize our 
database object structures and minimize 
document sizes, putatively leading to 
improved system capability and 
performance through a more efficient 
use of system resources than what was 
shown in our on initial measurements 
(see Figure 1). 

Outside of scaling, documentation will 
be a top priority for Mysore Lab once 
Meteor Galaxy hosting is available.  
Currently, our instruction manuals, 
templates, Batch files, executables, and 
other RAIL documents are organized 
across three different file hosting 
services.  All of the installers, 3D-
printing schematics, and other large files 
that cannot be hosted on our static 

Fig. 11.  Sample extract from a lab-
internal RAIL troubleshooting manual.  
Here, the process for diagnosing and 
remedying an unresponsive infrared (IR) 
sensor is outlined in a stepwise fashion. 

 



15 

GitHub Pages webpage or in the GitHub wiki will be moved to the dedicated 
RAIL website hosted on Meteor Galaxy using FreeDNS.  This website will help 
us to engage professionally with other interested labs and individuals we meet 
through SfN, and in general, provide a more accessible platform for any 
interested parties to contact us and communicate on the project. 

We will also continue to generalize RAIL system properties where possible, 
produce more experimental paradigm and data analysis templates, and 
incorporate more automation and user-friendly features in support of different 
research paradigms.  One currently planned feature set encompasses a redesign 
of the RAIL box for extended hours-long operation, and another entails GUI 
integration of the continuous data streams output by calcium imaging or 
optogenetics microscopes.  Each new paradigm presents novel challenges to 
RAIL’s versatility on the software side, as well as new opportunities for 
exploiting the modular capabilities of RAIL’s intrinsic template system. 

In summation, I have learned over the course of the RAIL project that open 
source software development is a careful balancing act of competing initiatives 
and tradeoffs.  As there is no “one-size-fits-all” solution for most problems, 
developers must tailor capabilities and features towards a particular audience 
or use case.  Oftentimes solving a problem is only the first step, as the labor 
involved in preparing a solution can sometimes be more intensive than the 
development of the solution itself. 

Furthermore, in order for community participation surrounding any project to 
grow, there must be sufficient momentum to overcome the benefits of a “do-it-
yourself” solution.  In other words, a system that aims to be more generic like 
RAIL must also be feature-rich and convenient enough to outweigh the benefits 
of a perfectly tailored lab-grown solution.  Reaching this critical mass inflection 
point for a community involves a great deal of upfront sustained effort and 
commitment. 

Although our project’s timeline did not evolve according to plan, the valuable 
experience of problem solving with individuals peripheral to the project, such 
as JHTV advisors, purchasing contacts, and database engineers, likewise 
resulted in unexpected advances.  We gained more familiarity with colleagues 
and engaged in unforeseen community outreach.  Ultimately, our goal is to 
provide an open source solution for the larger community.  So, in that regard, 
the time delays were very well spent, learning more about other community 
members’ unique perspectives on the issue we’ve set out to solve and gaining 
more of our own perspective, as well, on RAIL’s role within the larger open 
source and neuroscience communities. 
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