

RAIL
Free and Open Source Software
Project Fund (FOSSProF) Final Report

Barbara Holt

Mysore Lab

1

ABOUT RAIL

Code Repository: github.com/badholt/rail

The Rodent Automated and Integrated Learning (RAIL) system is an open
source project leveraging web-based developer tools and open source software
to operate Internet of Things (IoT) hardware in the behavioral training of
animal subjects for neuroscience experiments, specifically visually guided tasks
in mice. Our primary objective is to provide an open source community-based
alternative for high-throughput operant behavioral training that pairs the user-
friendly benefits of more costly commercial software systems with the specially
tailored benefits of a home-grown system developed in the lab. By providing
neuroscience researchers with a modular, versatile, and cost-effective platform
for behavioral training, we hope to cultivate new research opportunities and
community dialogue by lowering some of the financial and technical barriers to
entry.

The average behavioral training paradigm may take many months to set up and
implement and often requires engineering or technical expertise that lies
outside the scope of a laboratory’s research focus. Behavioral training
outcomes also involve a considerable amount of animal subject attrition due to
some animals failing to learn a particular task or complications arising from
other aspects of the project, such as surgeries. Therefore, it is essential for
researchers to be able to set up a novel training paradigm in a timely manner
while simultaneously preparing to train as many subjects in parallel as
possible.

Commercial behavioral training systems provide a reliable user experience for
researchers, usually offering robust technical support and detailed
documentation of their systems. Unfortunately, in many cases, these
commercial systems are also prohibitively expensive, with much of their
proprietary software either “paywalled” or restricted in its functionality. Such
financial limitations can significantly constrict the size of a research project,
limiting a laboratory’s ability to engage in massively parallel experiments.

Conversely, lab-grown systems feature highly customized and tailored designs,
precisely targeted towards lab-specific methodologies and paradigms.
However, these systems are also subject to varied reliability and burden a
behavioral-focused lab with labor-intensive technical development and
support. RAIL serves as a middle-ground option with an extensible modular
and user-friendly design, open source community support, and added
reliability and quality assurance thanks to Mysore Lab’s extensive calibration,
characterization, and beta testing. While RAIL setup requires individuals and
labs to take a more active role in the experiment setup process than
commercially available options, it does so for a fraction of the cost. Likewise,
while unmodified RAIL software will not perfectly address every possible

https://github.com/badholt/rail

2

experimental paradigm, it provides a stable foundation for implementing novel
use cases in a fraction of the time required for a lab-grown system. Ultimately,
a cost-effective and user-friendly system for behavioral training permits
neuroscience laboratories to focus more on research than setup by more easily
generating a large pool of highly trained mice for massively parallel
experiments.

ACTIVITIES & PROGRESS
Due to unanticipated delays in Johns Hopkins’ procurement process, our
scaling optimization efforts are still ongoing for the high-throughput version of
the RAIL system. However, the months long process has allowed us to make
significant inroads with the Node-based open source community, refine our
internal beta testing and development processes, and focus on improving
reliability and convenience for the end-user.

Through consultation with Meteor JS, MongoDB, and ScaleGrid engineers, we
learned how to characterize our active database and project future data growth
according to current industry standards. As a result, we were able to translate
the prototypical usage of a RAIL operant training box into common database
metrics, such as network and memory requirements. In the coming year, this
per-box data equivalency unit will allow us to reinterpret code efficiency and
database performance improvements in terms of added research capability and
overall cost savings. Thus, we can now also provide higher fidelity cost
estimates to potential users in the neuroscience and open source communities,
as well as others who are interested in using or hosting RAIL software.

Fig. 1. Sample data equivalency for the network bandwidth requirements of one RAIL box
running a Mysore Lab behavioral training paradigm of a visual discrimination task in mice.

In response to the logistical challenges involved in launching our scaling
efforts, we pivoted our approach to emphasize more in-house beta testing of the
RAIL system. We branched our code base into three separate versions of RAIL
– (1) a master branch dedicated to “production,” or in this case, established

Network Bandwidth Requirements

Average Document Size 7725.525183

Objects per Second per Box 0.154

Documents per Second Served 4

3

session operations, (2) a development branch for testing new features and bug
fixes on the already established foundation, and (3) a desktop-capable version
of RAIL which was updated to Meteor 3.0 and is no longer backwards
compatible with previous versions of the software. In parallel, using MongoDB
Compass and a series of custom installers, we also developed a new workflow
for modifying the database as it underwent active development changes.

THE DEVELOPMENT BRANCH

From a behavioral standpoint, one of the most significant new features added
to the RAIL development branch was the capacity to generate customizable
probability distributions. Visual discrimination paradigms frequently include
multiple stimuli or variants of a single visual stimulus. This requires the
software to have a method of deciding which stimulus is shown when and for
how often. For example, in earlier phases of Mysore Lab’s standard visual
discrimination task, a gratings stimulus will be shown oriented vertically for
approximately half of an experiment session’s trials and horizontally for the
other half of an experiment session’s trials. In the past, the order and
probability of one stimulus orientation or the other occurring was handled by

an algorithm with a
random number
generator (RNG).
Expanding upon this basic
functionality, several
variables were exposed
and incorporated into the
graphical user interface
(GUI) for users to
customize, and an entirely
new algorithm was
developed to produce
variable and weighted
trial combinations beyond
the standard 1:1 ratio.

Now, when researchers
need to distribute the
value of a particular
variable across a single
session, they may
carefully control the
proportions of individual
outcomes. A default
distribution is
automatically calculated
according to the default

Fig. 2. Screenshot of the experiment session settings
GUI in web-based RAIL application. Here, a template for
Shaping 6, a late-stage Mysore Lab visual task paradigm,
is loaded and awaiting modification of the probabilities of
either a horizontal or a vertical gratings stimulus
occurring in an upcoming Shaping 6 session.

4

values of a given experiment template. However, the overall distribution size
may either be adjusted relative to this default size or updated to an absolute
amount. Next, the desired percentage of each stimulus variant may be
specified, with a readout on the GUI reporting a preview calculation of the
number of trials presenting each variant.

Finally, upon session initiation, a session scaffold is generated using the
modified template, and the generated trials are shuffled with an efficient O(n)
Fisher-Yates shuffling algorithm. The experiment session will then proceed
either for a specified number of trials or a specified duration in milliseconds.
However, independent of the number of trials initiated, the probability of a
given stimulus variant being presented will be determined by the researcher’s
specified probability parameters. The percentages and distribution size will
essentially determine the number of each type of trial in the probability “bag,”
while interactions from the mouse will determine which trials are presented, as
if the mouse were drawing “tiles” from the probability bag. In addition to the
presentation of a specific stimulus, other session variables may utilize this
same probability distribution functionality across trials. For example, the
opacity or location of a stimulus may vary according to a preset holistic
probability distribution.

Fig. 3. Locations of two gratings stimuli from Mysore Lab’s late-stage Shaping 8A visual
paradigm are shown relative to a 3x3 and a 5x5 calibration grid on a 800x400 px screen. The
text overlays shown were for labeling purposes only and are not present in the RAIL GUI.

When multiple stimuli and variables are distributed across a session, the
combinatorial probabilities can become quite complex. Thus, a second major
update to RAIL involved the introduction of modular template definitions for
dependent variables. In other words, the value of one variable, such as a
stimulus’ location on a grid, may now be described relative to another variable,
such as a second stimulus’ location on the grid, within our portable templates.
Previously, dependent variables were hard-coded within custom functions.
Although new custom functions and methods could be added to RAIL, on a
practical level, this rendered our software more lab-specific, tailored to the
idiosyncrasies of Mysore Lab operations. The addition of this expansive
capability supports community usage by exponentially increasing the diversity
of possible relationships between experiment components. For example, a
stimulus’ opacity may now be linked to its orientation, or the screen brightness

5

may be linked to the duration of an
audio tone. By moving beyond the
need for dependent variables to be
enveloped in hard-coded functions,
RAIL software can now naively
reproduce more experimental
paradigms and implementations
straight “out of the box” with shareable
JSON templates.

Among several bug fixes to templates
and user accounts, we also added a
third major enhancement to the user
experience – a calibration view. As
stimulus presentation and reward
delivery are critical for behavioral
training on visual tasks, researchers
must ensure that stimuli are presented
in their proper locations and that water
rewards are delivered in precise
amounts at all times. However,
economical IoT hardware typically
does not deliver the same degree of
precision and performance as more
expensive commercial products. This
may result in a significant increase in
the amount of time a researcher spends
calibrating component devices. Thus,
in order to minimize the time spent on
calibration and daily session
operations, we’ve added a new
“calibration view” for stimulus

alignment on the screen, as well as for modification of the milliliters of water
reward delivered according to a customizable linear function. In both cases, to
maximize convenience for the researcher, calibration values for individual
boxes are specified as offsets instead of absolute values. This allows all
operable boxes or devices to be run en masse, initiated simultaneously from a
single session template but each delivering water reward and visuals according
to their individual calibration requirements. In principle, calibration offsets
may be applied to the characteristics of any hardware component, such as an
alternative liquid or food reward delivery system. In a future code release, we
plan on updating this language and our documentation to reflect a more generic
usage of this feature.

Fig. 4. A sample JSON object
describing a flanker stimulus similar to
the grey gratings shown in Figure 3.
For this flanker stimulus, the
orientation of the gratings is dependent
on the orientation of the target
stimulus. Here, the ‘transform’
property specifies that the flanker
orientation will always be rotated 90°
clockwise, or perpendicular to the
target stimulus.

6

Fig. 5. Two windows depicting a “calibration view” within the RAIL GUI. The leftmost
window modal is used to align visual elements to the physical screen on each box or device,
and the rightmost window modal is used to offset the amount of water reward delivered to a
particular box, or the duration the solenoid valve stays open, as well as to customize the linear
function used to translate the amount in milliliters to a solenoid open duration in seconds.

An update of Raspbian OS from Debian Bullseye to Debian Bookworm
propelled RAIL code forward in regard to futureproofing by boosting its
compatibility with new hardware, such as the Raspberry Pi 5. Since different
devices and OSes may be integrated into the RAIL system, this also offered an
excellent opportunity to refine how cross-platform installers will be handled
during RAIL setup for both RAIL boxes and the RAIL hub. The installer
recommendations from the Linux Foundation’s OpenJS courses introduced me
to new resources that helped to streamline cross-platform installations. Our
RAIL documentation was also improved to cover common troubleshooting
cases, particularly concerning the new installer and initial setup.

Each RAIL operant training box includes a Raspberry Pi which runs either the
browser-based RAIL application or the RAIL desktop application in kiosk
mode. Simultaneously, several background services on the Raspbian operating
system (OS) maintain a connection to device hardware and software. However,
the Debian Bookworm update also rendered some of the RAIL box’s
background services obsolete and revealed a future dilemma for the RAIL
workflow.

Carefully calibrated screen brightness is very important for visually based
behavioral tasks and video recordings of experiment sessions are essential for
aligning behavior to neural data. However, adjusting each box manually or
downloading from each RAIL box one at a time quickly becomes untenable at

7

scale. Therefore, convenient remote access to RAIL boxes is a high priority for
the overall serviceability of the system.

The Python scripts governing the background services for remote modification
of RAIL box properties and Raspberry Pi settings, such as screen brightness,
were updated for Debian Bookworm, and brand new functionality was added in
the form of custom Windows Batch scripts for bulk video downloads from RAIL
boxes to the RAIL hub. Basic video and storage space management controls
were added to the development version of our RAIL GUI, as well, integrated
into a device management page. Alternatively, we investigated automated
uploads to third-party video hosting and file storage services, such as Google
Drive. Currently, these third-party services involve authentication and API
inclusion that is too complex for the simple reliable functionality RAIL aims to
provide, but it may prove to be a useful community feature in the future.

Lastly, RealVNC has long been the default remote access platform for
Raspberry Pi’s and has provided the RAIL system with a user-friendly GUI for
accessing each RAIL box. However, as of the update to Debian Bookworm,
Raspbian OS no longer supports RealVNC. Over the summer, RealVNC ended
its free tier plan, requiring Raspberry Pi and other open source projects to find
alternative solutions for convenient remote access with a GUI. Raspberry Pi is
already filling the vacuum with Raspberry Pi Connect, and RAIL will likely
transition to using Raspberry Pi’s VNC service as a convenient remote access
option in the future. Yet, the experience highlighted some of the inherent risks
involved in open source projects like RAIL, where the functionality of the
software depends on compatibility between many different libraries, packages,
and code dependencies maintained by groups with competing interests. For
now, RAIL maintains stable remote access connections to RAIL boxes through
the multiple redundancies of non-commercial RealVNC, Secure Shell Protocol
(SSH), and the custom scripts recently written for use on Debian Bookworm.

THE DESKTOP APPLICATION

Expanding the scope of the RAIL system from small scale experiments to high-
throughput behavioral training amplifies some of the most critical development
challenges we’ve faced to date – namely, (1) network latency, (2) compliance
with organizational security requirements, and (3) providing a convenient user
experience that minimizes the abundant repetitive tasks involved in running
massively parallel experiments.

Both the master and development branches of RAIL are network-dependent
due to industry-standard security restrictions which limit a web browser’s
access to local device hardware. Nearly every behavioral training paradigm
requires linking physical inputs, or real-time browser interactions, with either
physical hardware outputs controlled by a local device or systematic software
responses controlled by a database or native management script. This
necessitates communication between the browser, local hardware, and

https://www.raspberrypi.com/documentation/computers/remote-access.html#raspberry-pi-connect

8

potentially, a centralized database server. Thus, we used the IoT-friendly
Message Queuing Telemetry Transport (MQTT) protocol as a workaround to
transport data and commands between the browser-based RAIL application
and local hardware via MQTT hardware drivers written in Python. These
messages were relayed through our centralized database, or RAIL “hub,” which
allowed for real-time monitoring and data collection during sessions, yet
generated a concerning amount of network latency. Using MQTT in
combination with the WebSockets protocol as an outer “shell” helped us to
minimize latency surrounding real-time interactive events in the browser, yet
not enough to allay research concerns.

Fig. 6. Simplified comparison of two distinct networking architectures for accessing essential
device hardware involved in operant training. In panel A, a network-dependent workaround
utilizes the MQTT networking protocol to bypass browser limitations for accessing hardware.
In panel B, a network-independent desktop application communicates directly with hardware
on the Raspberry Pi device, significantly reducing the latency involved in experiment sessions.

Given many neuroscience lab’s interest in integrating neuroscience hardware,
such as calcium imaging or optogenetics microscopes, into their behavioral
training paradigms, a more robust and reliable approach to local hardware
access became necessary. Precision timing and reporting of events is crucial for
the accurate interpretation of any neural data collected. Therefore, we
developed a partially offline network-independent solution for communicating
with our operant training box hardware – a standalone desktop application.
After the initial instructions for how an experiment session should proceed are
sent to participating RAIL boxes over the local network, in the form of a JSON
template, the desktop application is free to execute trials without further
communication with the central hub. This simulates the basic offline design of
many lab-grown behavioral training systems without sacrificing the user-
friendly features found in commercial software. Furthermore, it allows each
RAIL box’s Raspberry Pi to run the session continuously and store data locally
before uploading a finalized report to the hub at the end of each session. Since
trial events are no longer subject to network delays, the data-consequential
effects of network latency are effectively removed from experiment sessions. A

9

local network is only needed to synchronize data en masse between the RAIL
boxes and the RAIL hub at the beginning or end of unqueued sessions.

Fig. 7. Trial lag times are plotted for the first four phases of a Mysore Lab behavioral
training paradigm. Each duration in milliseconds encompasses the variable network latency
involved in communication between a touch input in the browser-based RAIL application and
the transit of a time to live (TTL) electrical pulse from a Raspberry Pi general purpose input
output (GPIO) pin to the data acquisition (DAQ) box of an Inscopix nVistaHD calcium
imaging microscope.

Our planned development of a RAIL desktop application coincided with an
exciting upgrade to our underlying Meteor JavaScript (JS) framework, Meteor
3.0. Years in the making, this significant improvement to the Meteor JS
architecture assists in the promotion of our RAIL community building efforts.
Not only does Meteor 3.0 modernize Meteor for 2024, bringing it into
compliance with the greater Node.js foundation and enabling a host of new
development tools, but it is presently drawing in a new crowd of software
developers and fresh community support. A massive code migration is
currently underway as myriad Meteor packages are being updated, some for the
first time in years, to the new asynchronous Meteor format. As the updates
continue, we plan on consolidating our code further, moving away from custom
packages where possible and replacing package dependencies with custom code
where necessary.

One of the most fundamental changes contained within the June Meteor 3.0
update was a transition away from synchronous fibers to an asynchronous

10

“await/async” callback coding structure. As a Node-based JS web framework,
Meteor is built upon Node.js but handles all of the web development tasks
which are currently unsupported by Node.js. Historically, Meteor has deviated
from Node.js conventions to prioritize readability and user experience,
occasionally putting it at odds with Node.js and preventing updates due to code
conflicts. This summer’s transition to an asynchronous format finally
standardized Meteor JS with the rest of Node.js, allowing Meteor to integrate
Node 20, the newest version of the Node.js stack. Thus, the Node developer
courses I participated in through the Linux Foundation have become even more
relevant to RAIL development, especially the control flow sections on managing
asynchronous operations. Since Node.js inputs and outputs will no longer be
handled by RAIL fibers, it is of paramount importance that RAIL code is
optimized for efficient parallel execution of events. In this regard, the lessons
learned from the Linux Foundation’s asynchronous lab exercises will be
invaluable going forward.

Although linguistically Meteor 3.0 is a critical departure from prior
implementations of Meteor JS, its release provided an opportunity to efficiently
comb through and update RAIL code while performing an internal code audit.
As a result, we were finally able to update RAIL to the cutting edge version of
Meteor. We had previously postponed this unwieldy update due to limited time
for software development, for handling deprecated packages and unmaintained
software dependencies (see Supplementary A for a sample Meteor packages
listing). Now that our RAIL code has been refreshed from this development
rut, RAIL users will be able to utilize the latest web tools and infrastructure, as
well as better meet modern operational security standards.

OUTCOMES & IMPACT
Many lab-grown behavioral training systems hold the potential for directed
development into a more generalized community-accessible training solution.
However, very rarely does neuroscience software make a successful transition
from custom lab-specific software to an active open source project. When
accomplished, the impacts of software like Psychtoolbox, OpenEphys, or Bpod
on research capabilities and productivity are immense. Standardization across
the broader neuroscience community cultivates collaboration and fosters new
ideas as novel technologies are incorporated cross-contextually from outside
fields. The overarching objective of the RAIL project has been to produce
sustainable and impactful open source software capable of filling this need for
behavioral training in neuroscience. To achieve this end, Mysore Lab needed
the time and resources to focus on refining the underlying RAIL software in a
multifunctional direction, rather than simply refining a few parameters or
features to fit a particular study. Our participation in the FOSSProF program

http://psychtoolbox.org/
https://open-ephys.org/
https://github.com/sanworks

11

has given us the operational latitude we needed to expand upon our original
vision for a modular and versatile behavioral training platform.

By preparing RAIL for community engagement, we are finally in a position
where we can begin to build upon our network and collaborate technically with
other labs. Common pitfalls of open source projects include limited support,
limited functionality, compatibility issues, and the lack of a centralized
provider – all issues that stem from the absence of adequate incentives for
sustained development. While we suspect that addressing these concerns and
cultivating a RAIL community network will be a long-term and gradual learning
process, we believe that due to its relevance to a small but important niche of
academic research, there are sufficient incentives already in place for RAIL
development to progress in multiple directions of community support.
Although most contributions will likely serve a lab-specific purpose or use case,
there is already enough overlap across experimental paradigms and disciplines
for any collaborative components to significantly expedite the experiment setup
process for myriad labs.

In the interest of sustainability, we first discussed the marketing potential of
RAIL with Andrew Wichmann from Johns Hopkins Technology Ventures
(JHTV). Thanks to his guidance, we obtained a better understanding of the
current business and legal landscape, as well as RAIL’s position as a middle-
ground option in the neuroscience software space, with combined elements of
both commercial and lab-grown behavioral training systems. Going forward
with this perspective, we’ve been able to bolster RAIL’s strengths and fill in
feature gaps in order for RAIL to better serve as a middle-ground behavioral
training system. Modernization updates have helped with future-proofing the
RAIL software and preparing for a code release to which contemporary
audiences would be more willing and capable of contributing. Code review and
lab-internal auditing have resulted in better security and compatibility with
popular software and operating systems, and generalized features have been
expanded upon with user-friendly capabilities that better showcase the system’s
modularity. Altogether, these improvements have prepared us for optimizing a
new scalable version of RAIL and ultimately promoting a more reliable and
customizable open source product to foster community engagement.

Our engagement with the wider open source community involves a two-prong
approach, with emphasis on both the open source software development
community and the open source neuroscience community. Although not all of
our networking has resulted in meaningful collaboration, we have made
significant strides by generating early interest in our future scaling-optimized
and desktop-capable RAIL release.

For the neuroscience prong, we first researched other lab-grown systems that
are currently being used in the successful training of mice on complex
behavioral tasks. After a detailed discussion with a lab studying spatial
representations in freely moving mice, we confirmed several of our suspicions
on how best to address community concerns without sacrificing the user-

12

friendliness or reliability benefits of the established RAIL system. Although
labs such as this one apply many of the same components to their behavioral
training systems as Mysore Lab does with RAIL, components such as Python
scripts, Raspberry Pi microcontrollers, IoT hardware, or solenoid valve liquid
delivery systems, there is generally no emphasis on system calibration,
documentation, user convenience, or code reusability. The average experiment
is mostly hard-coded, and reliability usually consists of avoiding networking
and centralization. Oftentimes the system operator and the original developer
of the system are far removed, with basic training passed down from researcher
to researcher but no clear path forward for how to add new functionality to the
system. Thus, in cases where the current researcher is forced to manage 24
different command terminal windows to start 24 different boxes running the
same hard-coded paradigm, there seems to be genuine interest in an open
source system that can recreate the task through a GUI and manage sessions
reliably and conveniently en masse.

On October 7th, our new version of RAIL will be presented at the Society for
Neuroscience (SfN) conference in Chicago, Illinois. This annual mass gathering
of the neuroscience community attracts nearly half a million neuroscientists
from labs around the globe. At one of our past presentations of RAIL at SfN,
we spoke with around 14 different labs who were actively interested in the
then-untested RAIL prototype and added them to our mailing list. Now that
the RAIL project is at a more mature state, we expect to grow our list with
additional community engagement. And this time, we will have more
community building tools at our disposal to make the most of their
engagement.

For the software prong, the most promising avenues
forward seem to be through advertising RAIL, our
particular application or use case of their respective
softwares, through the Meteor JS, MongoDB, and
ScaleGrid networks. Inclusion on website showcases
and participation in community forums will inspire
curiosity and interest in the new community-
prepared version of RAIL. Meteor Software in
particular has already provided us with educational
resources to share with both experienced and
aspiring engineers and researchers who express
interest in learning how to use Meteor JS and RAIL.
Along with RAIL-specific information and resources,
these materials will be distributed at SfN in October.

The Linux Foundation’s JavaScriptLandia
membership was also an excellent introduction into
the Node.js ecosystem via a reputable industry giant
and credentialing authority. These credentials will be
included in our RAIL community outreach materials.

Fig. 8. The
JavaScriptLandia badge
conferred upon purchase of
an individual membership.
It appears the networking
aspects of membership are
only available through
public connections with
personal social media
accounts.

13

However, in isolation, the program’s networking potential appears to be limited
without further purchases or interactions through third-party social media.

Future RAIL development will focus on thoroughly testing the RAIL desktop
application in an experimental lab setting using funding from an R21 and other
grants. While the RAIL system was actively engaged in data collection for an
ongoing experiment, it was not practical to make significant changes to the
working RAIL hub software. Now, after the completion of SfN on October 9th,
the current RAIL master and development branches will be deprecated to make
way for the desktop-capable Meteor 3.0 version. As soon as the purchasing
process resolves for Meteor JS and ScaleGrid, this newest version of RAIL will
be hosted on Meteor Galaxy and characterized using the Monti Application
Performance Monitor (APM). In addition to monitoring system metrics like
memory usage, CPU usage, and active network connections, Monti APM will
allow us to drill down and optimize RAIL code at a granular methods level. Any
and all performance improvements will then be translated into and expressed
as added parallel training capabilities using per-box data equivalency units as
described in Figure 1.

Fig. 9. Screenshots of an example application being monitored and analyzed by Monti APM.
On the left, Monti APM monitors overall system resources, data which will be used to stress
test the RAIL system and calculate the total number of RAIL boxes that may be run in parallel.
On the right, a method level breakdown of application usage sorts from highest to lowest
throughput, allowing programmers to optimize the highest priority methods first for the
greatest upfront resource savings and the quickest performance improvements.
Images from https://docs.montiapm.com/

https://docs.montiapm.com/introduction
https://docs.montiapm.com/introduction
https://docs.montiapm.com/introduction
https://docs.montiapm.com/

14

Fig. 10. Landing splash page for the RAIL project, currently hosted on GitHub Pages.

By uploading our RAIL application to Meteor Galaxy and eventually hosting our
database on ScaleGrid’s standalone MongoDB server, we will be engaging in
vertical scaling by moving operations onto a more powerful resource-rich
machine. Horizontal scaling would require we further segment our RAIL
application, distributing different system capabilities across separate servers.
We have already segmented RAIL services into four separate servers based on
functionality – (1) a general operations Node server, (2) a real-time video
streaming server, (3) a Mongo database server, and (4) a MQTT server. As we
collect system performance data, we will use our premium support plans to
consult with Meteor and ScaleGrid engineers on whether this is sufficient
horizontal scaling for our needs or if further optimization is possible.
Additionally, we will use support
recommendations to optimize our
database object structures and minimize
document sizes, putatively leading to
improved system capability and
performance through a more efficient
use of system resources than what was
shown in our on initial measurements
(see Figure 1).

Outside of scaling, documentation will
be a top priority for Mysore Lab once
Meteor Galaxy hosting is available.
Currently, our instruction manuals,
templates, Batch files, executables, and
other RAIL documents are organized
across three different file hosting
services. All of the installers, 3D-
printing schematics, and other large files
that cannot be hosted on our static

Fig. 11. Sample extract from a lab-
internal RAIL troubleshooting manual.
Here, the process for diagnosing and
remedying an unresponsive infrared (IR)
sensor is outlined in a stepwise fashion.

15

GitHub Pages webpage or in the GitHub wiki will be moved to the dedicated
RAIL website hosted on Meteor Galaxy using FreeDNS. This website will help
us to engage professionally with other interested labs and individuals we meet
through SfN, and in general, provide a more accessible platform for any
interested parties to contact us and communicate on the project.

We will also continue to generalize RAIL system properties where possible,
produce more experimental paradigm and data analysis templates, and
incorporate more automation and user-friendly features in support of different
research paradigms. One currently planned feature set encompasses a redesign
of the RAIL box for extended hours-long operation, and another entails GUI
integration of the continuous data streams output by calcium imaging or
optogenetics microscopes. Each new paradigm presents novel challenges to
RAIL’s versatility on the software side, as well as new opportunities for
exploiting the modular capabilities of RAIL’s intrinsic template system.

In summation, I have learned over the course of the RAIL project that open
source software development is a careful balancing act of competing initiatives
and tradeoffs. As there is no “one-size-fits-all” solution for most problems,
developers must tailor capabilities and features towards a particular audience
or use case. Oftentimes solving a problem is only the first step, as the labor
involved in preparing a solution can sometimes be more intensive than the
development of the solution itself.

Furthermore, in order for community participation surrounding any project to
grow, there must be sufficient momentum to overcome the benefits of a “do-it-
yourself” solution. In other words, a system that aims to be more generic like
RAIL must also be feature-rich and convenient enough to outweigh the benefits
of a perfectly tailored lab-grown solution. Reaching this critical mass inflection
point for a community involves a great deal of upfront sustained effort and
commitment.

Although our project’s timeline did not evolve according to plan, the valuable
experience of problem solving with individuals peripheral to the project, such
as JHTV advisors, purchasing contacts, and database engineers, likewise
resulted in unexpected advances. We gained more familiarity with colleagues
and engaged in unforeseen community outreach. Ultimately, our goal is to
provide an open source solution for the larger community. So, in that regard,
the time delays were very well spent, learning more about other community
members’ unique perspectives on the issue we’ve set out to solve and gaining
more of our own perspective, as well, on RAIL’s role within the larger open
source and neuroscience communities.

18

SUPPLEMENTARY

A

	ABOUT RAIL
	ACTIVITIES & PROGRESS
	The Development Branch
	The Desktop Application
	OUTCOMES & IMPACT
	FINANCIAL INFORMATION
	Deviations
	SUPPLEMENTARY
	A
	B

