
Software
Management Plans

Explainer
JHU Open Source Programs Office



What is a software management plan?

A document written by the developers or maintainers of a software 
project that describes how the project will be developed, 
maintained, and curated. 

The goal of a software management plan (SMP) is to ensure that 
the software is usable and maintainable in the long term.



Why create an SMP?

An SMP makes explicit what the software does, who it is for, what 
the outputs are, who is responsible for the release, and how to 
ensure the software stays available.

It can be used to explain why new software is needed, and to verify 
work that went into implementation, i.e. for reporting to funders or 
university administration.



When should I write an SMP?

Ideally, an SMP should be drafted at the beginning of a project.

However, even for existing projects, it is valuable to create an SMP 
to summarize existing practices, and stimulate reflection and 
evaluation.



What are the core elements of an SMP?
● Purpose
● Version control
● Repository
● User documentation
● Software licensing and 

compatibility
● Deployment documentation
● Citation

● Developer documentation
● Testing
● Software engineering 

quality
● Packaging
● Maintenance
● Support
● Risk Analysis



Do I have to include all those?

Not all elements are required for all projects. For small projects -
where the developer is the primary user, and the software may not 
be used beyond a defined period or in a different context, you can 
use a limited set: Purpose, Version Control, User and Deployment 
Documentation, and License.

The following slides walk through this subset of elements, and an 
SMP template for small projects is included with the transcript for 
this Explainer.



Purpose

What is the purpose of the software? What problem does it solve, who is 
the intended audience, and what are its advantages and limitations?

Example: The JHU project CoGAPS has a useful and succinct statement of 
purpose: https://github.com/FertigLab/CoGAPS

Further reading: Checklist for a Software Management Plan -
https://doi.org/10.5281/zenodo.2159713.

https://github.com/FertigLab/CoGAPS
https://doi.org/10.5281/zenodo.2159713


Version control

A version control system is a software tool that helps track and manage 
changes to files over time, helping developers and users identify specific 
versions of the software. 

Examples: GitHub, GitLab, Bitbucket. JHU affiliates have access to a GitHub 
Campus enterprise account at no cost through the OSPO.

Further reading: Version Control from The Turing Way - https://the-turing-
way.netlify.app/reproducible-research/vcs.html

https://ospo.library.jhu.edu/services/github-enterprise/
https://the-turing-way.netlify.app/reproducible-research/vcs.html


User documentation

User documentation does not need to be extensive, but should explain 
clearly what the software does, and how it should be used.

Example: The JHU project Python Microscope has a clean and easy to read 
getting started guide: https://python-microscope.org/doc/getting-started

Further reading: Tutorial template from the Good Docs project -
https://gitlab.com/tgdp/templates/-/blob/main/tutorial/template_tutorial.md

https://python-microscope.org/doc/getting-started
https://gitlab.com/tgdp/templates/-/blob/main/tutorial/template_tutorial.md


Deployment documentation

Deployment documentation should explain system requirements (e.g. 
dependencies) for deploying the software, and instructions for installing and 
testing.

Examples: The JHU project Fortuna is a simple package installation, while the 
DSpace repository application is more complex.

Further reading: Installation template from the Good Docs project: 
https://gitlab.com/tgdp/templates/-/blob/main/installation-guide/guide_installation-guide.md

https://github.com/AkchurinDA/Fortuna.jl
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace
https://gitlab.com/tgdp/templates/-/blob/main/installation-guide/guide_installation-guide.md


Software licensing and compatibility

Note which license you’ll use to specify conditions of use for your software. 
Software licenses must be compatible with the license of external 
components (dependencies, libraries) that the software uses.

Example: The MIT License is an open-source license.

Further reading: JHU OSPO Licensing Information -
https://ospo.library.jhu.edu/learn-grow/licensing-overview/

https://opensource.org/license/mit
https://ospo.library.jhu.edu/learn-grow/licensing-overview/


The content in this Explainer is adapted from:

Martinez-Ortiz, Carlos, Paula Martinez Lavanchy, Laurents Sesink, Brett G. 
Olivier, James Meakin, Maaike de Jong, and Maria Cruz. “Practical Guide to 
Software Management Plans.” Zenodo, October 27, 2022.
https://doi.org/10.5281/zenodo.7248877.

Which is licensed via Creative Commons Attribution 4.0 International, 
https://creativecommons.org/licenses/by/4.0/deed.en. 

https://doi.org/10.5281/zenodo.7248877
https://creativecommons.org/licenses/by/4.0/deed.en


ospo@jhu.edu

https://ospo.library.jhu.edu

Questions? Ask the
JHU Open Source Programs Office

mailto:ospo@jhu.edu
https://ospo.library.jhu.edu

