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LEGEND initiative to bring together health data
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“Large-scale Evidence GEneration via Network of Databases”
to compare second-line treatments for type-2 diabetes mellitus:
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LEGEND initiative to bring together health data

Table 1| Description of databases from the Observational Health Data Sciences and Informatics network included in
the study.

Years of exposure No of
Name of database Abbreviation Country of origin included participants

US national databases (claims data)

IBM MarketScan Commercial Claims and Encounters Data CCAE USA 2011-21 265874
IBM Health MarketScan Multi-State Medicaid Database MDCD USA 2011-20 40064
IBM Health MarketScan Medicare Supplemental and Coordination of ~ MDCR USA 2011-21 43857
Benefits Database

Optum Clinformatics Extended Data Mart - Date of Death OCEDM USA 2011-21 211877
Optum de-identified Electronic Health Record Dataset OEHR USA 2011-21 299008
US Open Claims usoc USA 2000-21 3521191
US health system databases (electronic health record data)

Columbia University Irving Medical Centre cumc USA 2011-21 4561
Johns Hopkins Medicine JHM USA 2016-21 3759
Stanford Medicine STARR USA 2011-21 2993
Department of Veterans Affairs Healthcare System VA USA 2011-21 230019
Non-US databases (electronic health record data)

Australia Longitudinal Patient Database Practice Profile ALPD Australia 2012-21 2322
France Longitudinal Patient Database FLPD France 2012-21 13270
Germany Disease Analyser GDA Germany 1992-21 32442
Health Informatics Centre at the University of Dundee HIC Scotland 2011-21 5580
HKHA - Hong Kong Hospital Authority HKHA Hong Kong 2011-18 4614
UK-IQVIA Medical Research Data IMRD United Kingdom  2011-19 25173

Information System for Research in Primary Care SIDIAP Spain 2011-21 61382




Data from indiv health systems aren’t big enough
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LEGEND-T2DM Class Cohorts

Cohort Definition

€001: DPP4I main(101100000)
€045: GLP1RA main(201100000)
€089: SGLT2I main(301100000)
€133: SU main(401100000)

Concepts in Data Source
Orphan Concepts
Cohort Counts Display

Both @ Subjects Only Records Only

Incidence Rate

&

Time Distributions A

Show | 1000 % entries Search:
Inclusion Rule Statistics Cohort JHM U's_open_Claims
Index Event Breakdown All
Visit Context €001 931 957,634

Co45 723 287,861
Cohort Characterization 089 819 488,394

C133 1,383 1,883,873
Temporal Characterization

Compare Cohort Char.

Compare Temporal Char.
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Transfer leaning from larger database to smaller one

Idea: Inform the model for a smaller “Database B" by transferring
insights from the model trained on a larger "Database A."



Transfer leaning from larger database to smaller one

Idea: Inform the model for a smaller “Database B" by transferring
insights from the model trained on a larger "Database A."

As an example, consider a linear model for both Database A and B:
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Transfer leaning from larger database to smaller one

Idea: Inform the model for a smaller “Database B" by transferring

insights from the model trained on a larger "Database A."

As an example, consider a linear model for both Database A and B:
Y™ = XHGW L )
y® = XBgE) 4 B

We expect B and B to be correlated; i.e. the value of 3, if
known, provides information on 3(%):

(y(m’X(A)) - B = BB,



Transfer leaning from larger database to smaller one

1) Obtain the posterior of B |y X ).



Transfer leaning from larger database to smaller one

1) Obtain the posterior of B |y X ).

(B A
J
for BJ(-B) according to the assumed correlation structure;

) and std deviation o(Z!?)

2) Calculate the informed mean p j



Transfer leaning from larger database to smaller one

1) Obtain the posterior of B |y X ).

2) Calculate the informed mean ,ug-BlA)

for [3’;’?) according to the assumed correlation structure;

and std deviation UJ(-B‘A)

3) Train the model B under prior ﬂ](. N/\/( (B14) U?(BIA))_

J



High-dim, data-driven prediction/causal inference

Domains Counts
Hopkins PharMetrics
Condition 5,170 10,358
Drug 1,685 2,118
Measurement 1,334 940
Procedure 1,137 4,479
Table: Counts of Observation 359 876
covariates within each Device 105 1,194
OMOP concept domains. Race 6 0
Gender 1 1
Ethnicity 1 0

Overall 9,798 19,967




Skew-shrinkage for high-dim transfer learning



Skew-shrinkage for high-dim transfer learning

Consider combining an informed prior with shrinkage by setting
B B
B = 8,87

where §; = 0 with probability p € [0,1] and J; = 1 otherwise.




Skew-shrinkage for high-dim transfer learning

Consider combining an informed prior with shrinkage by setting
B B
B = 8,87

where §; = 0 with probability p € [0,1] and J; = 1 otherwise.
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(For computational efficiency, we use a continuous analogue.)



Demo: new skew-shrinkage feature in BayesBridge
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skew_mean = np.array([0.1, 1.0, -0.3])
skew_sd = np.array([1.0, 0.1, 0.5])

skew_prior = HorseshoePrior(
skew_mean=skew_mean, # New!
skew_sd=skew_sd, # New!

regularizing_slab_size=1.

linear_model = RegressionModel(y, X, family=’linear’)

bridge = BayesBridge(linear_model, skew_prior)

post_samples, _ = bridge.gibbs(
n_iter=1000, init={’global_scale’: .01}
)




Simple interface change, hard internal work
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Application: Hopkins EHR meets LEGEND-T2DM

Goal: Compare four classes of second-line T2DM treatment for
their cardio-vascular effectiveness and safety.

Here we focus on GLP-1 receptor agonists and DPP-4 inhibitors.



Application: Hopkins EHR meets LEGEND-T2DM

Goal: Compare four classes of second-line T2DM treatment for
their cardio-vascular effectiveness and safety.

Here we focus on GLP-1 receptor agonists and DPP-4 inhibitors.

Data: IQVIA PharMetrics (source) and Hopkins EHR (destination)

» DPP-4 users: 10,203 in PharMetrics and 1,003 in Hopkins
> GLP-1 users: 9,220 in PharMetrics and 1,032 in Hopkins



Result of “internal” transfer within IQVIA data



Result of “internal” transfer within IQVIA data

We used 80% of the IQVIA data as “Database A,” 10% as
“Database B,” and the rest for calculating out-of-sample AUC:



Result of “internal” transfer within IQVIA data

We used 80% of the IQVIA data as “Database A,” 10% as
“Database B,” and the rest for calculating out-of-sample AUC:

Data fraction (sample size) W /o transfer With transfer

10% (np = 1,942) 0.766 0.773
3% (np = 587) 0.724 0.747
2% (n = 387) 0.701 0.745
1% (np = 193) 0.634 0.747




Comparison of estimates w/o vs. with transfer

Prior Mean vs. Horseshoe estimates
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